Theorem elex22 | index | src |

theorem elex22 (R: set) (l1 l2: nat) {n x y: nat}:
  $ l1, l2 e. ex2 R <->
    len l1 = len l2 /\
      E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)) $;
StepHypRefExpression
1 bitr
(l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R)) ->
  (len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <->
    len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))) ->
  (l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)))
2 elex2
l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R)
3 1, 2 ax_mp
(len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <->
    len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))) ->
  (l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)))
4 bitr
(E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> E. y (nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R))) ->
  (E. y (nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R)) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)) ->
  (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))
5 anass
nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R <-> nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R)
6 5 exeqi
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> E. y (nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R))
7 4, 6 ax_mp
(E. y (nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R)) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)) ->
  (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))
8 exan1
E. y (nth n l1 = suc x /\ (nth n l2 = suc y /\ x, y e. R)) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)
9 7, 8 ax_mp
E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R)
10 9 exeqi
E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))
11 10 exeqi
E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <-> E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))
12 11 aneq2i
len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. R) <->
  len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))
13 3, 12 ax_mp
l1, l2 e. ex2 R <-> len l1 = len l2 /\ E. n E. x (nth n l1 = suc x /\ E. y (nth n l2 = suc y /\ x, y e. R))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)