theorem ex2eqd (_G: wff) (_R1 _R2: set):
  $ _G -> _R1 == _R2 $ >
  $ _G -> ex2 _R1 == ex2 _R2 $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          biidd | 
          _G -> (len l1 = len l2 <-> len l1 = len l2)  | 
        
        
          | 2 | 
           | 
          biidd | 
          _G -> (nth n l1 = suc x /\ nth n l2 = suc y <-> nth n l1 = suc x /\ nth n l2 = suc y)  | 
        
        
          | 3 | 
           | 
          eqidd | 
          _G -> x, y = x, y  | 
        
        
          | 4 | 
           | 
          hyp _Rh | 
          _G -> _R1 == _R2  | 
        
        
          | 5 | 
          3, 4 | 
          eleqd | 
          _G -> (x, y e. _R1 <-> x, y e. _R2)  | 
        
        
          | 6 | 
          2, 5 | 
          aneqd | 
          _G -> (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1 <-> nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2)  | 
        
        
          | 7 | 
          6 | 
          exeqd | 
          _G -> (E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1) <-> E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2))  | 
        
        
          | 8 | 
          7 | 
          exeqd | 
          _G -> (E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1) <-> E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2))  | 
        
        
          | 9 | 
          8 | 
          exeqd | 
          _G -> (E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1) <-> E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2))  | 
        
        
          | 10 | 
          1, 9 | 
          aneqd | 
          _G ->
  (len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1) <->
    len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2)) | 
        
        
          | 11 | 
          10 | 
          abeqd | 
          _G ->
  {l2 | len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1)} ==
    {l2 | len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2)} | 
        
        
          | 12 | 
          11 | 
          sabeqd | 
          _G ->
  S\ l1, {l2 | len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R1)} ==
    S\ l1, {l2 | len l1 = len l2 /\ E. n E. x E. y (nth n l1 = suc x /\ nth n l2 = suc y /\ x, y e. _R2)} | 
        
        
          | 13 | 
          12 | 
          conv ex2 | 
          _G -> ex2 _R1 == ex2 _R2  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8)