Step | Hyp | Ref | Expression |
1 |
|
all2com |
l2, l1 e. all2 (cnv (S\ x, {y | x e. A})) <-> l1, l2 e. all2 (S\ x, {y | x e. A}) |
2 |
|
eleq2 |
all2 (cnv (S\ x, {y | x e. A})) == all2 (S\ y, A) -> (l2, l1 e. all2 (cnv (S\ x, {y | x e. A})) <-> l2, l1 e. all2 (S\ y, A)) |
3 |
|
all2eq |
cnv (S\ x, {y | x e. A}) == S\ y, A -> all2 (cnv (S\ x, {y | x e. A})) == all2 (S\ y, A) |
4 |
|
eqstr |
cnv (S\ x, {y | x e. A}) == S\ y, {x | x e. A} -> S\ y, {x | x e. A} == S\ y, A -> cnv (S\ x, {y | x e. A}) == S\ y, A |
5 |
|
cnvopab |
cnv (S\ x, {y | x e. A}) == S\ y, {x | x e. A} |
6 |
4, 5 |
ax_mp |
S\ y, {x | x e. A} == S\ y, A -> cnv (S\ x, {y | x e. A}) == S\ y, A |
7 |
|
abid2 |
{x | x e. A} == A |
8 |
7 |
sabeqi |
S\ y, {x | x e. A} == S\ y, A |
9 |
6, 8 |
ax_mp |
cnv (S\ x, {y | x e. A}) == S\ y, A |
10 |
3, 9 |
ax_mp |
all2 (cnv (S\ x, {y | x e. A})) == all2 (S\ y, A) |
11 |
2, 10 |
ax_mp |
l2, l1 e. all2 (cnv (S\ x, {y | x e. A})) <-> l2, l1 e. all2 (S\ y, A) |
12 |
|
all2all2 |
l2, l1 e. all2 (S\ y, A) -> all A l1 |
13 |
11, 12 |
sylbi |
l2, l1 e. all2 (cnv (S\ x, {y | x e. A})) -> all A l1 |
14 |
1, 13 |
sylbir |
l1, l2 e. all2 (S\ x, {y | x e. A}) -> all A l1 |