theorem eexsabd (G p: wff) {x z: nat} (y: nat x z) (A: set x):
$ G -> z e. A -> p $ >
$ G -> y e. S\ x, A -> p $;
Step | Hyp | Ref | Expression |
1 |
|
eleq1 |
w = y -> (w e. S\ x, A <-> y e. S\ x, A) |
2 |
1 |
iexe |
y e. S\ x, A -> E. w w e. S\ x, A |
3 |
|
eleq1 |
fst w, snd w = w -> (fst w, snd w e. S\ x, A <-> w e. S\ x, A) |
4 |
|
fstsnd |
fst w, snd w = w |
5 |
3, 4 |
ax_mp |
fst w, snd w e. S\ x, A <-> w e. S\ x, A |
6 |
|
elsabs |
fst w, snd w e. S\ x, A <-> snd w e. S[fst w / x] A |
7 |
|
eleq1 |
z = snd w -> (z e. S[fst w / x] A <-> snd w e. S[fst w / x] A) |
8 |
7 |
iexe |
snd w e. S[fst w / x] A -> E. z z e. S[fst w / x] A |
9 |
|
nfv |
F/ x G |
10 |
|
nfsbs1 |
FS/ x S[fst w / x] A |
11 |
10 |
nfel2 |
F/ x z e. S[fst w / x] A |
12 |
|
nfv |
F/ x p |
13 |
11, 12 |
nfim |
F/ x z e. S[fst w / x] A -> p |
14 |
9, 13 |
nfim |
F/ x G -> z e. S[fst w / x] A -> p |
15 |
|
hyp h |
G -> z e. A -> p |
16 |
|
sbsq |
x = fst w -> A == S[fst w / x] A |
17 |
16 |
eleq2d |
x = fst w -> (z e. A <-> z e. S[fst w / x] A) |
18 |
17 |
imeq1d |
x = fst w -> (z e. A -> p <-> z e. S[fst w / x] A -> p) |
19 |
18 |
imeq2d |
x = fst w -> (G -> z e. A -> p <-> G -> z e. S[fst w / x] A -> p) |
20 |
14, 15, 19 |
sbethh |
G -> z e. S[fst w / x] A -> p |
21 |
20 |
eexd |
G -> E. z z e. S[fst w / x] A -> p |
22 |
8, 21 |
syl5 |
G -> snd w e. S[fst w / x] A -> p |
23 |
6, 22 |
syl5bi |
G -> fst w, snd w e. S\ x, A -> p |
24 |
5, 23 |
syl5bir |
G -> w e. S\ x, A -> p |
25 |
24 |
eexd |
G -> E. w w e. S\ x, A -> p |
26 |
2, 25 |
syl5 |
G -> y e. S\ x, A -> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)