Theorem eexsabd | index | src |

theorem eexsabd (G p: wff) {x z: nat} (y: nat x z) (A: set x):
  $ G -> z e. A -> p $ >
  $ G -> y e. S\ x, A -> p $;
StepHypRefExpression
1 eleq1
w = y -> (w e. S\ x, A <-> y e. S\ x, A)
2 1 iexe
y e. S\ x, A -> E. w w e. S\ x, A
3 eleq1
fst w, snd w = w -> (fst w, snd w e. S\ x, A <-> w e. S\ x, A)
4 fstsnd
fst w, snd w = w
5 3, 4 ax_mp
fst w, snd w e. S\ x, A <-> w e. S\ x, A
6 elsabs
fst w, snd w e. S\ x, A <-> snd w e. S[fst w / x] A
7 eleq1
z = snd w -> (z e. S[fst w / x] A <-> snd w e. S[fst w / x] A)
8 7 iexe
snd w e. S[fst w / x] A -> E. z z e. S[fst w / x] A
9 nfv
F/ x G
10 nfsbs1
FS/ x S[fst w / x] A
11 10 nfel2
F/ x z e. S[fst w / x] A
12 nfv
F/ x p
13 11, 12 nfim
F/ x z e. S[fst w / x] A -> p
14 9, 13 nfim
F/ x G -> z e. S[fst w / x] A -> p
15 hyp h
G -> z e. A -> p
16 sbsq
x = fst w -> A == S[fst w / x] A
17 16 eleq2d
x = fst w -> (z e. A <-> z e. S[fst w / x] A)
18 17 imeq1d
x = fst w -> (z e. A -> p <-> z e. S[fst w / x] A -> p)
19 18 imeq2d
x = fst w -> (G -> z e. A -> p <-> G -> z e. S[fst w / x] A -> p)
20 14, 15, 19 sbethh
G -> z e. S[fst w / x] A -> p
21 20 eexd
G -> E. z z e. S[fst w / x] A -> p
22 8, 21 syl5
G -> snd w e. S[fst w / x] A -> p
23 6, 22 syl5bi
G -> fst w, snd w e. S\ x, A -> p
24 5, 23 syl5bir
G -> w e. S\ x, A -> p
25 24 eexd
G -> E. w w e. S\ x, A -> p
26 2, 25 syl5
G -> y e. S\ x, A -> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)