pub theorem caser (A B: set) (n: nat): $ case A B @ b1 n = B @ n $;
Step | Hyp | Ref | Expression |
1 |
|
ifpos |
odd i -> if (odd i) (B @ (i // 2)) (A @ (i // 2)) = B @ (i // 2) |
2 |
|
oddeq |
i = b1 n -> (odd i <-> odd (b1 n)) |
3 |
|
b1odd |
odd (b1 n) |
4 |
3 |
a1i |
i = b1 n -> odd (b1 n) |
5 |
2, 4 |
mpbird |
i = b1 n -> odd i |
6 |
1, 5 |
syl |
i = b1 n -> if (odd i) (B @ (i // 2)) (A @ (i // 2)) = B @ (i // 2) |
7 |
|
b1div2 |
b1 n // 2 = n |
8 |
|
diveq1 |
i = b1 n -> i // 2 = b1 n // 2 |
9 |
7, 8 |
syl6eq |
i = b1 n -> i // 2 = n |
10 |
9 |
appeq2d |
i = b1 n -> B @ (i // 2) = B @ n |
11 |
6, 10 |
eqtrd |
i = b1 n -> if (odd i) (B @ (i // 2)) (A @ (i // 2)) = B @ n |
12 |
11 |
applame |
(\ i, if (odd i) (B @ (i // 2)) (A @ (i // 2))) @ b1 n = B @ n |
13 |
12 |
conv case |
case A B @ b1 n = B @ n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)