theorem Sumeqd (_G: wff) (_A1 _A2 _B1 _B2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> _B1 == _B2 $ >
$ _G -> Sum _A1 _B1 == Sum _A2 _B2 $;
Step | Hyp | Ref | Expression |
1 |
|
biidd |
_G -> (odd n <-> odd n) |
2 |
|
eqidd |
_G -> n // 2 = n // 2 |
3 |
|
hyp _Bh |
_G -> _B1 == _B2 |
4 |
2, 3 |
eleqd |
_G -> (n // 2 e. _B1 <-> n // 2 e. _B2) |
5 |
|
hyp _Ah |
_G -> _A1 == _A2 |
6 |
2, 5 |
eleqd |
_G -> (n // 2 e. _A1 <-> n // 2 e. _A2) |
7 |
1, 4, 6 |
ifpeqd |
_G -> (ifp (odd n) (n // 2 e. _B1) (n // 2 e. _A1) <-> ifp (odd n) (n // 2 e. _B2) (n // 2 e. _A2)) |
8 |
7 |
abeqd |
_G -> {n | ifp (odd n) (n // 2 e. _B1) (n // 2 e. _A1)} == {n | ifp (odd n) (n // 2 e. _B2) (n // 2 e. _A2)} |
9 |
8 |
conv Sum |
_G -> Sum _A1 _B1 == Sum _A2 _B2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)