Theorem Sumeq | index | src |

theorem Sumeq (_A1 _A2 _B1 _B2: set):
  $ _A1 == _A2 -> _B1 == _B2 -> Sum _A1 _B1 == Sum _A2 _B2 $;
StepHypRefExpression
1 anl
_A1 == _A2 /\ _B1 == _B2 -> _A1 == _A2
2 anr
_A1 == _A2 /\ _B1 == _B2 -> _B1 == _B2
3 1, 2 Sumeqd
_A1 == _A2 /\ _B1 == _B2 -> Sum _A1 _B1 == Sum _A2 _B2
4 3 exp
_A1 == _A2 -> _B1 == _B2 -> Sum _A1 _B1 == Sum _A2 _B2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)