Theorem Sumeq1d | index | src |

theorem Sumeq1d (_G: wff) (_A1 _A2 B: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> Sum _A1 B == Sum _A2 B $;
StepHypRefExpression
1 hyp _h
_G -> _A1 == _A2
2 eqsidd
_G -> B == B
3 1, 2 Sumeqd
_G -> Sum _A1 B == Sum _A2 B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)