theorem cardb0 (n: nat): $ card (b0 n) = card n $;
Step | Hyp | Ref | Expression |
1 |
|
b00 |
b0 0 = 0 |
2 |
|
b0eq |
n = 0 -> b0 n = b0 0 |
3 |
|
id |
n = 0 -> n = 0 |
4 |
2, 3 |
eqeqd |
n = 0 -> (b0 n = n <-> b0 0 = 0) |
5 |
1, 4 |
mpbiri |
n = 0 -> b0 n = n |
6 |
5 |
cardeqd |
n = 0 -> card (b0 n) = card n |
7 |
|
add0 |
card n + 0 = card n |
8 |
|
addeq |
card (b0 n // 2) = card n -> b0 n % 2 = 0 -> card (b0 n // 2) + b0 n % 2 = card n + 0 |
9 |
|
cardeq |
b0 n // 2 = n -> card (b0 n // 2) = card n |
10 |
|
b0div2 |
b0 n // 2 = n |
11 |
9, 10 |
ax_mp |
card (b0 n // 2) = card n |
12 |
8, 11 |
ax_mp |
b0 n % 2 = 0 -> card (b0 n // 2) + b0 n % 2 = card n + 0 |
13 |
|
b0mod2 |
b0 n % 2 = 0 |
14 |
12, 13 |
ax_mp |
card (b0 n // 2) + b0 n % 2 = card n + 0 |
15 |
|
b0ne0 |
b0 n != 0 <-> n != 0 |
16 |
15 |
conv ne |
b0 n != 0 <-> ~n = 0 |
17 |
|
cardval |
b0 n != 0 -> card (b0 n) = card (b0 n // 2) + b0 n % 2 |
18 |
16, 17 |
sylbir |
~n = 0 -> card (b0 n) = card (b0 n // 2) + b0 n % 2 |
19 |
14, 18 |
syl6eq |
~n = 0 -> card (b0 n) = card n + 0 |
20 |
7, 19 |
syl6eq |
~n = 0 -> card (b0 n) = card n |
21 |
6, 20 |
cases |
card (b0 n) = card n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)