theorem cardeqd (_G: wff) (_s1 _s2: nat):
$ _G -> _s1 = _s2 $ >
$ _G -> card _s1 = card _s2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqsidd |
_G -> \ f, f @ (size (Dom f) // 2) + size (Dom f) % 2 == \ f, f @ (size (Dom f) // 2) + size (Dom f) % 2 |
2 |
|
hyp _sh |
_G -> _s1 = _s2 |
3 |
1, 2 |
sreceqd |
_G -> srec (\ f, f @ (size (Dom f) // 2) + size (Dom f) % 2) _s1 = srec (\ f, f @ (size (Dom f) // 2) + size (Dom f) % 2) _s2 |
4 |
3 |
conv card |
_G -> card _s1 = card _s2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)