pub theorem Suml (A B: set) (n: nat): $ b0 n e. Sum A B <-> n e. A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | ifpneg | ~odd i -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A) | 
        
          | 2 |  | oddeq | i = b0 n -> (odd i <-> odd (b0 n)) | 
        
          | 3 |  | b0odd | ~odd (b0 n) | 
        
          | 4 | 3 | a1i | i = b0 n -> ~odd (b0 n) | 
        
          | 5 | 2, 4 | mtbird | i = b0 n -> ~odd i | 
        
          | 6 | 1, 5 | syl | i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A) | 
        
          | 7 |  | b0div2 | b0 n // 2 = n | 
        
          | 8 |  | diveq1 | i = b0 n -> i // 2 = b0 n // 2 | 
        
          | 9 | 7, 8 | syl6eq | i = b0 n -> i // 2 = n | 
        
          | 10 | 9 | eleq1d | i = b0 n -> (i // 2 e. A <-> n e. A) | 
        
          | 11 | 6, 10 | bitrd | i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> n e. A) | 
        
          | 12 | 11 | elabe | b0 n e. {i | ifp (odd i) (i // 2 e. B) (i // 2 e. A)} <-> n e. A | 
        
          | 13 | 12 | conv Sum | b0 n e. Sum A B <-> n e. A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)