pub theorem Suml (A B: set) (n: nat): $ b0 n e. Sum A B <-> n e. A $;
Step | Hyp | Ref | Expression |
1 |
|
ifpneg |
~odd i -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A) |
2 |
|
oddeq |
i = b0 n -> (odd i <-> odd (b0 n)) |
3 |
|
b0odd |
~odd (b0 n) |
4 |
3 |
a1i |
i = b0 n -> ~odd (b0 n) |
5 |
2, 4 |
mtbird |
i = b0 n -> ~odd i |
6 |
1, 5 |
syl |
i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A) |
7 |
|
b0div2 |
b0 n // 2 = n |
8 |
|
diveq1 |
i = b0 n -> i // 2 = b0 n // 2 |
9 |
7, 8 |
syl6eq |
i = b0 n -> i // 2 = n |
10 |
9 |
eleq1d |
i = b0 n -> (i // 2 e. A <-> n e. A) |
11 |
6, 10 |
bitrd |
i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> n e. A) |
12 |
11 |
elabe |
b0 n e. {i | ifp (odd i) (i // 2 e. B) (i // 2 e. A)} <-> n e. A |
13 |
12 |
conv Sum |
b0 n e. Sum A B <-> n e. A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)