Theorem Suml | index | src |

pub theorem Suml (A B: set) (n: nat): $ b0 n e. Sum A B <-> n e. A $;
StepHypRefExpression
1 ifpneg
~odd i -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A)
2 oddeq
i = b0 n -> (odd i <-> odd (b0 n))
3 b0odd
~odd (b0 n)
4 3 a1i
i = b0 n -> ~odd (b0 n)
5 2, 4 mtbird
i = b0 n -> ~odd i
6 1, 5 syl
i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> i // 2 e. A)
7 b0div2
b0 n // 2 = n
8 diveq1
i = b0 n -> i // 2 = b0 n // 2
9 7, 8 syl6eq
i = b0 n -> i // 2 = n
10 9 eleq1d
i = b0 n -> (i // 2 e. A <-> n e. A)
11 6, 10 bitrd
i = b0 n -> (ifp (odd i) (i // 2 e. B) (i // 2 e. A) <-> n e. A)
12 11 elabe
b0 n e. {i | ifp (odd i) (i // 2 e. B) (i // 2 e. A)} <-> n e. A
13 12 conv Sum
b0 n e. Sum A B <-> n e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)