Theorem Arrowssxp | index | src |

theorem Arrowssxp (A B: set): $ Arrow A B C_ Power (Xp A B) $;
StepHypRefExpression
1 elPower
a1 e. Power (Xp A B) <-> a1 C_ Xp A B
2 elArrow
a1 e. Arrow A B <-> func a1 A B
3 funcssxp
func a1 A B -> a1 C_ Xp A B
4 2, 3 sylbi
a1 e. Arrow A B -> a1 C_ Xp A B
5 1, 4 sylibr
a1 e. Arrow A B -> a1 e. Power (Xp A B)
6 5 ax_gen
A. a1 (a1 e. Arrow A B -> a1 e. Power (Xp A B))
7 6 conv subset
Arrow A B C_ Power (Xp A B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)