theorem Arrowfin (A B: set): $ finite A -> finite B -> finite (Arrow A B) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
2 |
Arrow A B C_ Power (Xp A B) |
||
3 |
finite (Power (Xp A B)) -> finite (Arrow A B) |
||
4 |
finite (Xp A B) -> finite (Power (Xp A B)) |
||
5 |
finite A -> finite B -> finite (Xp A B) |
||
6 |
finite A /\ finite B -> finite (Xp A B) |
||
7 |
finite A /\ finite B -> finite (Power (Xp A B)) |
||
8 |
finite A /\ finite B -> finite (Arrow A B) |
||
9 |
finite A -> finite B -> finite (Arrow A B) |