Theorem Arrowfin | index | src |

theorem Arrowfin (A B: set): $ finite A -> finite B -> finite (Arrow A B) $;
StepHypRefExpression
2
Arrow A B C_ Power (Xp A B)
3
finite (Power (Xp A B)) -> finite (Arrow A B)
4
finite (Xp A B) -> finite (Power (Xp A B))
5
finite A -> finite B -> finite (Xp A B)
6
finite A /\ finite B -> finite (Xp A B)
7
4, 6
finite A /\ finite B -> finite (Power (Xp A B))
8
3, 7
finite A /\ finite B -> finite (Arrow A B)
9
finite A -> finite B -> finite (Arrow A B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)