Theorem Arrowfin | index | src |

theorem Arrowfin (A B: set): $ finite A -> finite B -> finite (Arrow A B) $;
StepHypRefExpression
1 finss
Arrow A B C_ Power (Xp A B) -> finite (Power (Xp A B)) -> finite (Arrow A B)
2 Arrowssxp
Arrow A B C_ Power (Xp A B)
3 1, 2 ax_mp
finite (Power (Xp A B)) -> finite (Arrow A B)
4 powerfin
finite (Xp A B) -> finite (Power (Xp A B))
5 xpfin
finite A -> finite B -> finite (Xp A B)
6 5 imp
finite A /\ finite B -> finite (Xp A B)
7 4, 6 syl
finite A /\ finite B -> finite (Power (Xp A B))
8 3, 7 syl
finite A /\ finite B -> finite (Arrow A B)
9 8 exp
finite A -> finite B -> finite (Arrow A B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)