theorem zip02 (l: nat): $ zip l 0 = 0 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 |
len (zip l 0) = 0 <-> zip l 0 = 0 |
||
3 |
len (zip l 0) = min (len l) (len 0) |
||
7 |
len 0 = 0 |
||
8 |
min (len l) (len 0) = min (len l) 0 |
||
11 |
0 <= len l |
||
12 |
min (len l) 0 = 0 |
||
13 |
eqtr* |
min (len l) (len 0) = 0 |
|
14 |
eqtr* |
len (zip l 0) = 0 |
|
15 |
zip l 0 = 0 |