theorem zip02 (l: nat): $ zip l 0 = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
leneq0 |
len (zip l 0) = 0 <-> zip l 0 = 0 |
2 |
|
eqtr |
len (zip l 0) = min (len l) (len 0) -> min (len l) (len 0) = 0 -> len (zip l 0) = 0 |
3 |
|
ziplen |
len (zip l 0) = min (len l) (len 0) |
4 |
2, 3 |
ax_mp |
min (len l) (len 0) = 0 -> len (zip l 0) = 0 |
5 |
|
eqtr |
min (len l) (len 0) = min (len l) 0 -> min (len l) 0 = 0 -> min (len l) (len 0) = 0 |
6 |
|
mineq2 |
len 0 = 0 -> min (len l) (len 0) = min (len l) 0 |
7 |
|
len0 |
len 0 = 0 |
8 |
6, 7 |
ax_mp |
min (len l) (len 0) = min (len l) 0 |
9 |
5, 8 |
ax_mp |
min (len l) 0 = 0 -> min (len l) (len 0) = 0 |
10 |
|
eqmin2 |
0 <= len l -> min (len l) 0 = 0 |
11 |
|
le01 |
0 <= len l |
12 |
10, 11 |
ax_mp |
min (len l) 0 = 0 |
13 |
9, 12 |
ax_mp |
min (len l) (len 0) = 0 |
14 |
4, 13 |
ax_mp |
len (zip l 0) = 0 |
15 |
1, 14 |
mpbi |
zip l 0 = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)