Theorem zip02 | index | src |

theorem zip02 (l: nat): $ zip l 0 = 0 $;
StepHypRefExpression
1 leneq0
len (zip l 0) = 0 <-> zip l 0 = 0
2 eqtr
len (zip l 0) = min (len l) (len 0) -> min (len l) (len 0) = 0 -> len (zip l 0) = 0
3 ziplen
len (zip l 0) = min (len l) (len 0)
4 2, 3 ax_mp
min (len l) (len 0) = 0 -> len (zip l 0) = 0
5 eqtr
min (len l) (len 0) = min (len l) 0 -> min (len l) 0 = 0 -> min (len l) (len 0) = 0
6 mineq2
len 0 = 0 -> min (len l) (len 0) = min (len l) 0
7 len0
len 0 = 0
8 6, 7 ax_mp
min (len l) (len 0) = min (len l) 0
9 5, 8 ax_mp
min (len l) 0 = 0 -> min (len l) (len 0) = 0
10 eqmin2
0 <= len l -> min (len l) 0 = 0
11 le01
0 <= len l
12 10, 11 ax_mp
min (len l) 0 = 0
13 9, 12 ax_mp
min (len l) (len 0) = 0
14 4, 13 ax_mp
len (zip l 0) = 0
15 1, 14 mpbi
zip l 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)