Theorem ziplen | index | src |

theorem ziplen (l1 l2: nat): $ len (zip l1 l2) = min (len l1) (len l2) $;
StepHypRefExpression
1 lenlfn
len (lfn (\ a1, nth a1 l1 - 1, nth a1 l2 - 1) (min (len l1) (len l2))) = min (len l1) (len l2)
2 1 conv zip
len (zip l1 l2) = min (len l1) (len l2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)