Theorem zeqmznsubd | index | src |

theorem zeqmznsubd (G: wff) (a b c d n: nat):
  $ G -> mod(n): a = b $ >
  $ G -> mod(n): c = d $ >
  $ G -> modZ(n): a -ZN c = b -ZN d $;
StepHypRefExpression
1 zeqmtr
modZ(n): a -ZN c = b -ZN c -> modZ(n): b -ZN c = b -ZN d -> modZ(n): a -ZN c = b -ZN d
2 zeqmznsub1
modZ(n): a -ZN c = b -ZN c <-> mod(n): a = b
3 hyp h1
G -> mod(n): a = b
4 2, 3 sylibr
G -> modZ(n): a -ZN c = b -ZN c
5 zeqmznsub2
modZ(n): b -ZN c = b -ZN d <-> mod(n): c = d
6 hyp h2
G -> mod(n): c = d
7 5, 6 sylibr
G -> modZ(n): b -ZN c = b -ZN d
8 1, 4, 7 sylc
G -> modZ(n): a -ZN c = b -ZN d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)