Theorem zeqmaddn | index | src |

theorem zeqmaddn (a n: nat): $ modZ(n): a +Z b0 n = a $;
StepHypRefExpression
1 zeqmeq3
a +Z 0 = a -> (modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): a +Z b0 n = a)
2 zadd02
a +Z 0 = a
3 1, 2 ax_mp
modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): a +Z b0 n = a
4 zeqmadd2
modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): b0 n = 0
5 zeqmid0
modZ(n): b0 n = 0
6 4, 5 mpbir
modZ(n): a +Z b0 n = a +Z 0
7 3, 6 mpbi
modZ(n): a +Z b0 n = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)