theorem zeqmaddn (a n: nat): $ modZ(n): a +Z b0 n = a $;
Step | Hyp | Ref | Expression |
1 |
|
zeqmeq3 |
a +Z 0 = a -> (modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): a +Z b0 n = a) |
2 |
|
zadd02 |
a +Z 0 = a |
3 |
1, 2 |
ax_mp |
modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): a +Z b0 n = a |
4 |
|
zeqmadd2 |
modZ(n): a +Z b0 n = a +Z 0 <-> modZ(n): b0 n = 0 |
5 |
|
zeqmid0 |
modZ(n): b0 n = 0 |
6 |
4, 5 |
mpbir |
modZ(n): a +Z b0 n = a +Z 0 |
7 |
3, 6 |
mpbi |
modZ(n): a +Z b0 n = a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)