Theorem zadd02 | index | src |

theorem zadd02 (a: nat): $ a +Z 0 = a $;
StepHypRefExpression
1 eqtr
a +Z 0 = zfst a -ZN zsnd a -> zfst a -ZN zsnd a = a -> a +Z 0 = a
2 znsubeq
zfst a + zfst 0 = zfst a -> zsnd a + zsnd 0 = zsnd a -> zfst a + zfst 0 -ZN (zsnd a + zsnd 0) = zfst a -ZN zsnd a
3 2 conv zadd
zfst a + zfst 0 = zfst a -> zsnd a + zsnd 0 = zsnd a -> a +Z 0 = zfst a -ZN zsnd a
4 eqtr
zfst a + zfst 0 = zfst a + 0 -> zfst a + 0 = zfst a -> zfst a + zfst 0 = zfst a
5 addeq2
zfst 0 = 0 -> zfst a + zfst 0 = zfst a + 0
6 zfst0
zfst 0 = 0
7 5, 6 ax_mp
zfst a + zfst 0 = zfst a + 0
8 4, 7 ax_mp
zfst a + 0 = zfst a -> zfst a + zfst 0 = zfst a
9 add0
zfst a + 0 = zfst a
10 8, 9 ax_mp
zfst a + zfst 0 = zfst a
11 3, 10 ax_mp
zsnd a + zsnd 0 = zsnd a -> a +Z 0 = zfst a -ZN zsnd a
12 eqtr
zsnd a + zsnd 0 = zsnd a + 0 -> zsnd a + 0 = zsnd a -> zsnd a + zsnd 0 = zsnd a
13 addeq2
zsnd 0 = 0 -> zsnd a + zsnd 0 = zsnd a + 0
14 zsnd0
zsnd 0 = 0
15 13, 14 ax_mp
zsnd a + zsnd 0 = zsnd a + 0
16 12, 15 ax_mp
zsnd a + 0 = zsnd a -> zsnd a + zsnd 0 = zsnd a
17 add0
zsnd a + 0 = zsnd a
18 16, 17 ax_mp
zsnd a + zsnd 0 = zsnd a
19 11, 18 ax_mp
a +Z 0 = zfst a -ZN zsnd a
20 1, 19 ax_mp
zfst a -ZN zsnd a = a -> a +Z 0 = a
21 zfstsnd
zfst a -ZN zsnd a = a
22 20, 21 ax_mp
a +Z 0 = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)