theorem zb0orb0div (a: nat): $ a = b0 (a // 2) \/ a = -uZ b0 (-uZ a // 2) $;
Step | Hyp | Ref | Expression |
1 |
|
oreq |
(0 <=Z a <-> a = b0 (a // 2)) -> (a <=Z 0 <-> a = -uZ b0 (-uZ a // 2)) -> (0 <=Z a \/ a <=Z 0 <-> a = b0 (a // 2) \/ a = -uZ b0 (-uZ a // 2)) |
2 |
|
zle02eq |
0 <=Z a <-> a = b0 (a // 2) |
3 |
1, 2 |
ax_mp |
(a <=Z 0 <-> a = -uZ b0 (-uZ a // 2)) -> (0 <=Z a \/ a <=Z 0 <-> a = b0 (a // 2) \/ a = -uZ b0 (-uZ a // 2)) |
4 |
|
bitr3 |
(0 <=Z -uZ a <-> a <=Z 0) -> (0 <=Z -uZ a <-> a = -uZ b0 (-uZ a // 2)) -> (a <=Z 0 <-> a = -uZ b0 (-uZ a // 2)) |
5 |
|
zle0neg |
0 <=Z -uZ a <-> a <=Z 0 |
6 |
4, 5 |
ax_mp |
(0 <=Z -uZ a <-> a = -uZ b0 (-uZ a // 2)) -> (a <=Z 0 <-> a = -uZ b0 (-uZ a // 2)) |
7 |
|
bitr |
(0 <=Z -uZ a <-> -uZ a = b0 (-uZ a // 2)) -> (-uZ a = b0 (-uZ a // 2) <-> a = -uZ b0 (-uZ a // 2)) -> (0 <=Z -uZ a <-> a = -uZ b0 (-uZ a // 2)) |
8 |
|
zle02eq |
0 <=Z -uZ a <-> -uZ a = b0 (-uZ a // 2) |
9 |
7, 8 |
ax_mp |
(-uZ a = b0 (-uZ a // 2) <-> a = -uZ b0 (-uZ a // 2)) -> (0 <=Z -uZ a <-> a = -uZ b0 (-uZ a // 2)) |
10 |
|
bitr |
(-uZ a = b0 (-uZ a // 2) <-> -uZ b0 (-uZ a // 2) = a) ->
(-uZ b0 (-uZ a // 2) = a <-> a = -uZ b0 (-uZ a // 2)) ->
(-uZ a = b0 (-uZ a // 2) <-> a = -uZ b0 (-uZ a // 2)) |
11 |
|
znegeqcom |
-uZ a = b0 (-uZ a // 2) <-> -uZ b0 (-uZ a // 2) = a |
12 |
10, 11 |
ax_mp |
(-uZ b0 (-uZ a // 2) = a <-> a = -uZ b0 (-uZ a // 2)) -> (-uZ a = b0 (-uZ a // 2) <-> a = -uZ b0 (-uZ a // 2)) |
13 |
|
eqcomb |
-uZ b0 (-uZ a // 2) = a <-> a = -uZ b0 (-uZ a // 2) |
14 |
12, 13 |
ax_mp |
-uZ a = b0 (-uZ a // 2) <-> a = -uZ b0 (-uZ a // 2) |
15 |
9, 14 |
ax_mp |
0 <=Z -uZ a <-> a = -uZ b0 (-uZ a // 2) |
16 |
6, 15 |
ax_mp |
a <=Z 0 <-> a = -uZ b0 (-uZ a // 2) |
17 |
3, 16 |
ax_mp |
0 <=Z a \/ a <=Z 0 <-> a = b0 (a // 2) \/ a = -uZ b0 (-uZ a // 2) |
18 |
|
zleorle |
0 <=Z a \/ a <=Z 0 |
19 |
17, 18 |
mpbi |
a = b0 (a // 2) \/ a = -uZ b0 (-uZ a // 2) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)