Theorem znegeqcom | index | src |

theorem znegeqcom (a b: nat): $ -uZ a = b <-> -uZ b = a $;
StepHypRefExpression
1 bitr4
(-uZ a = b <-> a +Z b = 0) -> (-uZ b = a <-> a +Z b = 0) -> (-uZ a = b <-> -uZ b = a)
2 eqzneg
-uZ a = b <-> a +Z b = 0
3 1, 2 ax_mp
(-uZ b = a <-> a +Z b = 0) -> (-uZ a = b <-> -uZ b = a)
4 bitr4
(-uZ b = a <-> b +Z a = 0) -> (a +Z b = 0 <-> b +Z a = 0) -> (-uZ b = a <-> a +Z b = 0)
5 eqzneg
-uZ b = a <-> b +Z a = 0
6 4, 5 ax_mp
(a +Z b = 0 <-> b +Z a = 0) -> (-uZ b = a <-> a +Z b = 0)
7 eqeq1
a +Z b = b +Z a -> (a +Z b = 0 <-> b +Z a = 0)
8 zaddcom
a +Z b = b +Z a
9 7, 8 ax_mp
a +Z b = 0 <-> b +Z a = 0
10 6, 9 ax_mp
-uZ b = a <-> a +Z b = 0
11 3, 10 ax_mp
-uZ a = b <-> -uZ b = a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)