Theorem zaddcan1 | index | src |

theorem zaddcan1 (a b c: nat): $ a +Z c = b +Z c <-> a = b $;
StepHypRefExpression
1 zpncan
a +Z c -Z c = a
2 zpncan
b +Z c -Z c = b
3 zsubeq1
a +Z c = b +Z c -> a +Z c -Z c = b +Z c -Z c
4 2, 3 syl6eq
a +Z c = b +Z c -> a +Z c -Z c = b
5 1, 4 syl5eqr
a +Z c = b +Z c -> a = b
6 zaddeq1
a = b -> a +Z c = b +Z c
7 5, 6 ibii
a +Z c = b +Z c <-> a = b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)