theorem zaddcan1 (a b c: nat): $ a +Z c = b +Z c <-> a = b $;
Step | Hyp | Ref | Expression |
1 |
|
zpncan |
a +Z c -Z c = a |
2 |
|
zpncan |
b +Z c -Z c = b |
3 |
|
zsubeq1 |
a +Z c = b +Z c -> a +Z c -Z c = b +Z c -Z c |
4 |
2, 3 |
syl6eq |
a +Z c = b +Z c -> a +Z c -Z c = b |
5 |
1, 4 |
syl5eqr |
a +Z c = b +Z c -> a = b |
6 |
|
zaddeq1 |
a = b -> a +Z c = b +Z c |
7 |
5, 6 |
ibii |
a +Z c = b +Z c <-> a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)