Theorem takeall | index | src |

theorem takeall (l n: nat): $ len l <= n -> take l n = l $;
StepHypRefExpression
1 append02
take l n ++ 0 = take l n
2 takedrop
take l n ++ drop l n = l
3 dropall
len l <= n -> drop l n = 0
4 3 eqcomd
len l <= n -> 0 = drop l n
5 4 appendeq2d
len l <= n -> take l n ++ 0 = take l n ++ drop l n
6 2, 5 syl6eq
len l <= n -> take l n ++ 0 = l
7 1, 6 syl5eqr
len l <= n -> take l n = l

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)