theorem takeall (l n: nat): $ len l <= n -> take l n = l $;
Step | Hyp | Ref | Expression |
1 |
|
append02 |
take l n ++ 0 = take l n |
2 |
|
takedrop |
take l n ++ drop l n = l |
3 |
|
dropall |
len l <= n -> drop l n = 0 |
4 |
3 |
eqcomd |
len l <= n -> 0 = drop l n |
5 |
4 |
appendeq2d |
len l <= n -> take l n ++ 0 = take l n ++ drop l n |
6 |
2, 5 |
syl6eq |
len l <= n -> take l n ++ 0 = l |
7 |
1, 6 |
syl5eqr |
len l <= n -> take l n = l |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)