theorem srecpauxeqd (_G: wff) (_A1 _A2: set) (_n1 _n2: nat):
$ _G -> _A1 == _A2 $ >
$ _G -> _n1 = _n2 $ >
$ _G -> srecpaux _A1 _n1 = srecpaux _A2 _n2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> size (Dom f), lower {x | true (f @ x)} = size (Dom f), lower {x | true (f @ x)} |
2 |
|
hyp _Ah |
_G -> _A1 == _A2 |
3 |
1, 2 |
eleqd |
_G -> (size (Dom f), lower {x | true (f @ x)} e. _A1 <-> size (Dom f), lower {x | true (f @ x)} e. _A2) |
4 |
3 |
nateqd |
_G -> nat (size (Dom f), lower {x | true (f @ x)} e. _A1) = nat (size (Dom f), lower {x | true (f @ x)} e. _A2) |
5 |
4 |
lameqd |
_G -> \ f, nat (size (Dom f), lower {x | true (f @ x)} e. _A1) == \ f, nat (size (Dom f), lower {x | true (f @ x)} e. _A2) |
6 |
|
hyp _nh |
_G -> _n1 = _n2 |
7 |
5, 6 |
sreceqd |
_G -> srec (\ f, nat (size (Dom f), lower {x | true (f @ x)} e. _A1)) _n1 = srec (\ f, nat (size (Dom f), lower {x | true (f @ x)} e. _A2)) _n2 |
8 |
7 |
conv srecpaux |
_G -> srecpaux _A1 _n1 = srecpaux _A2 _n2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano2,
addeq,
muleq)