theorem srecpauxeq2d (_G: wff) (A: set) (_n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> srecpaux A _n1 = srecpaux A _n2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> A == A |
|
2 | hyp _h | _G -> _n1 = _n2 |
|
3 | 1, 2 | srecpauxeqd | _G -> srecpaux A _n1 = srecpaux A _n2 |