Theorem srecpauxeq2d | index | src |

theorem srecpauxeq2d (_G: wff) (A: set) (_n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> srecpaux A _n1 = srecpaux A _n2 $;
StepHypRefExpression
1 eqsidd
_G -> A == A
2 hyp _h
_G -> _n1 = _n2
3 1, 2 srecpauxeqd
_G -> srecpaux A _n1 = srecpaux A _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)