Theorem srecpauxeq1 | index | src |

theorem srecpauxeq1 (_A1 _A2: set) (n: nat):
  $ _A1 == _A2 -> srecpaux _A1 n = srecpaux _A2 n $;
StepHypRefExpression
1
_A1 == _A2 -> _A1 == _A2
2
_A1 == _A2 -> srecpaux _A1 n = srecpaux _A2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)