theorem splitopt (G: wff) (a: nat) (p: wff):
$ G -> a = 0 -> p $ >
$ G -> a = suc (a - 1) -> p $ >
$ G -> p $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h0 |
G -> a = 0 -> p |
2 |
|
sub1can |
a != 0 -> suc (a - 1) = a |
3 |
2 |
conv ne |
~a = 0 -> suc (a - 1) = a |
4 |
3 |
eqcomd |
~a = 0 -> a = suc (a - 1) |
5 |
|
hyp h1 |
G -> a = suc (a - 1) -> p |
6 |
4, 5 |
syl5 |
G -> ~a = 0 -> p |
7 |
1, 6 |
casesd |
G -> p |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)