Theorem splitopt | index | src |

theorem splitopt (G: wff) (a: nat) (p: wff):
  $ G -> a = 0 -> p $ >
  $ G -> a = suc (a - 1) -> p $ >
  $ G -> p $;
StepHypRefExpression
1 hyp h0
G -> a = 0 -> p
2 sub1can
a != 0 -> suc (a - 1) = a
3 2 conv ne
~a = 0 -> suc (a - 1) = a
4 3 eqcomd
~a = 0 -> a = suc (a - 1)
5 hyp h1
G -> a = suc (a - 1) -> p
6 4, 5 syl5
G -> ~a = 0 -> p
7 1, 6 casesd
G -> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, add0, addS)