Theorem splitpr2 | index | src |

theorem splitpr2 (G: wff) (a b: nat) (p: wff) (x y: nat):
  $ G -> a = x, y -> p $ >
  $ G -> b = y -> a = x, b -> p $;
StepHypRefExpression
1 hyp h
G -> a = x, y -> p
2 anll
G /\ b = y /\ a = x, b -> G
3 anr
G /\ b = y /\ a = x, b -> a = x, b
4 anlr
G /\ b = y /\ a = x, b -> b = y
5 4 preq2d
G /\ b = y /\ a = x, b -> x, b = x, y
6 3, 5 eqtrd
G /\ b = y /\ a = x, b -> a = x, y
7 1, 2, 6 sylc
G /\ b = y /\ a = x, b -> p
8 7 exp
G /\ b = y -> a = x, b -> p
9 8 exp
G -> b = y -> a = x, b -> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)