Theorem splitoptS | index | src |

theorem splitoptS (G: wff) (a b c: nat) (p: wff):
  $ G -> a = suc c -> p $ >
  $ G -> b = c -> a = suc b -> p $;
StepHypRefExpression
1 hyp h
G -> a = suc c -> p
2 anll
G /\ b = c /\ a = suc b -> G
3 anr
G /\ b = c /\ a = suc b -> a = suc b
4 anlr
G /\ b = c /\ a = suc b -> b = c
5 4 suceqd
G /\ b = c /\ a = suc b -> suc b = suc c
6 3, 5 eqtrd
G /\ b = c /\ a = suc b -> a = suc c
7 1, 2, 6 sylc
G /\ b = c /\ a = suc b -> p
8 7 exp
G /\ b = c -> a = suc b -> p
9 8 exp
G -> b = c -> a = suc b -> p

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7), axs_peano (peano2)