Theorem sndelrn | index | src |

theorem sndelrn (A: set) (p: nat): $ p e. A -> snd p e. Ran A $;
StepHypRefExpression
1 eleq1
fst p, snd p = p -> (fst p, snd p e. A <-> p e. A)
2 fstsnd
fst p, snd p = p
3 1, 2 ax_mp
fst p, snd p e. A <-> p e. A
4 prelrn
fst p, snd p e. A -> snd p e. Ran A
5 3, 4 sylbir
p e. A -> snd p e. Ran A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)