theorem sbsid {x: nat} (A: set x): $ S[x / x] A == A $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(y e. S[x / x] A <-> [x / x] y e. A) -> ([x / x] y e. A <-> y e. A) -> (y e. S[x / x] A <-> y e. A) |
2 |
|
elsbs |
y e. S[x / x] A <-> [x / x] y e. A |
3 |
1, 2 |
ax_mp |
([x / x] y e. A <-> y e. A) -> (y e. S[x / x] A <-> y e. A) |
4 |
|
sbid |
[x / x] y e. A <-> y e. A |
5 |
3, 4 |
ax_mp |
y e. S[x / x] A <-> y e. A |
6 |
5 |
eqri |
S[x / x] A == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)