Theorem nfslem | index | src |

theorem nfslem {x y: nat} (A: set y) (a: nat x) (B: set x):
  $ y = a -> A == B $ >
  $ FN/ x a $ >
  $ FS/ x B $;
StepHypRefExpression
1 eqscom
S[a / y] A == B -> B == S[a / y] A
2 hyp e
y = a -> A == B
3 2 sbse
S[a / y] A == B
4 1, 3 ax_mp
B == S[a / y] A
5 hyp h
FN/ x a
6 nfsv
FS/ x A
7 5, 6 nfsbsh
FS/ x S[a / y] A
8 4, 7 nfsx
FS/ x B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)