theorem nfslem {x y: nat} (A: set y) (a: nat x) (B: set x):
  $ y = a -> A == B $ >
  $ FN/ x a $ >
  $ FS/ x B $;
    | Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqscom | S[a / y] A == B -> B == S[a / y] A | |
| 2 | hyp e | y = a -> A == B | |
| 3 | 2 | sbse | S[a / y] A == B | 
| 4 | 1, 3 | ax_mp | B == S[a / y] A | 
| 5 | hyp h | FN/ x a | |
| 6 | nfsv | FS/ x A | |
| 7 | 5, 6 | nfsbsh | FS/ x S[a / y] A | 
| 8 | 4, 7 | nfsx | FS/ x B |