theorem sbsed (G: wff) {x: nat} (a: nat) (A: set x) (B: set):
$ G /\ x = a -> A == B $ >
$ G -> S[a / x] A == B $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbset | A. x (x = a -> A == B) -> S[a / x] A == B |
|
| 2 | hyp e | G /\ x = a -> A == B |
|
| 3 | 2 | ialda | G -> A. x (x = a -> A == B) |
| 4 | 1, 3 | syl | G -> S[a / x] A == B |