| Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          hyp hn | 
          x = n -> (px <-> pn)  | 
        
        
          | 2 | 
          1 | 
          sbe | 
          [n / x] px <-> pn  | 
        
        
          | 3 | 
           | 
          sbeq1 | 
          z = n -> ([z / x] px <-> [n / x] px)  | 
        
        
          | 4 | 
          2, 3 | 
          syl6bb | 
          z = n -> ([z / x] px <-> pn)  | 
        
        
          | 5 | 
           | 
          sbeq1 | 
          z = w -> ([z / x] px <-> [w / x] px)  | 
        
        
          | 6 | 
           | 
          anr | 
          G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> w = 0  | 
        
        
          | 7 | 
          6 | 
          sbeq1d | 
          G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> ([w / x] px <-> [0 / x] px)  | 
        
        
          | 8 | 
           | 
          hyp h0 | 
          x = 0 -> (px <-> p0)  | 
        
        
          | 9 | 
          8 | 
          sbe | 
          [0 / x] px <-> p0  | 
        
        
          | 10 | 
           | 
          hyp h1 | 
          G -> p0  | 
        
        
          | 11 | 
          9, 10 | 
          sylibr | 
          G -> [0 / x] px  | 
        
        
          | 12 | 
          11 | 
          anwll | 
          G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> [0 / x] px  | 
        
        
          | 13 | 
          7, 12 | 
          mpbird | 
          G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> [w / x] px  | 
        
        
          | 14 | 
           | 
          exsnoc | 
          w != 0 <-> E. l E. a w = l |> a  | 
        
        
          | 15 | 
           | 
          anr | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> ~w = 0  | 
        
        
          | 16 | 
          15 | 
          conv ne | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> w != 0  | 
        
        
          | 17 | 
          14, 16 | 
          sylib | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. l E. a w = l |> a  | 
        
        
          | 18 | 
           | 
          hyp hs | 
          x = l |> a -> (px <-> ps)  | 
        
        
          | 19 | 
          18 | 
          sbe | 
          [l |> a / x] px <-> ps  | 
        
        
          | 20 | 
           | 
          anr | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> w = l |> a  | 
        
        
          | 21 | 
          20 | 
          sbeq1d | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> ([w / x] px <-> [l |> a / x] px)  | 
        
        
          | 22 | 
          19, 21 | 
          syl6bb | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> ([w / x] px <-> ps)  | 
        
        
          | 23 | 
           | 
          snoclt | 
          l < l |> a  | 
        
        
          | 24 | 
          20 | 
          lteq2d | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> (l < w <-> l < l |> a)  | 
        
        
          | 25 | 
          23, 24 | 
          mpbiri | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> l < w  | 
        
        
          | 26 | 
           | 
          anlr | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> A. z (z < w -> [z / x] px)  | 
        
        
          | 27 | 
           | 
          lteq1 | 
          z = l -> (z < w <-> l < w)  | 
        
        
          | 28 | 
           | 
          hyp hl | 
          x = l -> (px <-> pl)  | 
        
        
          | 29 | 
          28 | 
          sbe | 
          [l / x] px <-> pl  | 
        
        
          | 30 | 
           | 
          sbeq1 | 
          z = l -> ([z / x] px <-> [l / x] px)  | 
        
        
          | 31 | 
          29, 30 | 
          syl6bb | 
          z = l -> ([z / x] px <-> pl)  | 
        
        
          | 32 | 
          27, 31 | 
          imeqd | 
          z = l -> (z < w -> [z / x] px <-> l < w -> pl)  | 
        
        
          | 33 | 
          32 | 
          eale | 
          A. z (z < w -> [z / x] px) -> l < w -> pl  | 
        
        
          | 34 | 
          26, 33 | 
          rsyl | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> l < w -> pl  | 
        
        
          | 35 | 
          25, 34 | 
          mpd | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> pl  | 
        
        
          | 36 | 
           | 
          hyp h2 | 
          G /\ pl -> ps  | 
        
        
          | 37 | 
          36 | 
          exp | 
          G -> pl -> ps  | 
        
        
          | 38 | 
          37 | 
          anwll | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> pl -> ps  | 
        
        
          | 39 | 
          35, 38 | 
          mpd | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> ps  | 
        
        
          | 40 | 
          22, 39 | 
          mpbird | 
          G /\ A. z (z < w -> [z / x] px) /\ w = l |> a -> [w / x] px  | 
        
        
          | 41 | 
          40 | 
          exp | 
          G /\ A. z (z < w -> [z / x] px) -> w = l |> a -> [w / x] px  | 
        
        
          | 42 | 
          41 | 
          anwl | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> w = l |> a -> [w / x] px  | 
        
        
          | 43 | 
          42 | 
          eexd | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. a w = l |> a -> [w / x] px  | 
        
        
          | 44 | 
          43 | 
          eexd | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. l E. a w = l |> a -> [w / x] px  | 
        
        
          | 45 | 
          17, 44 | 
          mpd | 
          G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> [w / x] px  | 
        
        
          | 46 | 
          13, 45 | 
          casesda | 
          G /\ A. z (z < w -> [z / x] px) -> [w / x] px  | 
        
        
          | 47 | 
          4, 5, 46 | 
          indstr | 
          G -> pn  |