Theorem rlameqd | index | src |

theorem rlameqd (_G: wff) {x: nat} (_a1 _a2 _v1 _v2: nat x):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _v1 = _v2 $ >
  $ _G -> \. x e. _a1, _v1 = \. x e. _a2, _v2 $;
StepHypRefExpression
1 hyp _vh
_G -> _v1 = _v2
2 1 lameqd
_G -> \ x, _v1 == \ x, _v2
3 hyp _ah
_G -> _a1 = _a2
4 3 nseqd
_G -> _a1 == _a2
5 2, 4 reseqd
_G -> (\ x, _v1) |` _a1 == (\ x, _v2) |` _a2
6 5 lowereqd
_G -> lower ((\ x, _v1) |` _a1) = lower ((\ x, _v2) |` _a2)
7 6 conv rlam
_G -> \. x e. _a1, _v1 = \. x e. _a2, _v2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)