theorem recnauxeq1d (_G: wff) (_z1 _z2: nat) (S: set) (n: nat): $ _G -> _z1 = _z2 $ > $ _G -> recnaux _z1 S n = recnaux _z2 S n $;
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hyp _h | _G -> _z1 = _z2 |
|
| 2 | eqsidd | _G -> S == S |
|
| 3 | eqidd | _G -> n = n |
|
| 4 | 1, 2, 3 | recnauxeqd | _G -> recnaux _z1 S n = recnaux _z2 S n |