theorem prcnv (A: set) (x y: nat): $ x, y e. cnv A <-> y, x e. A $;
Step | Hyp | Ref | Expression |
1 |
|
id |
_2 = y -> _2 = y |
2 |
1 |
anwr |
_1 = x /\ _2 = y -> _2 = y |
3 |
|
id |
_1 = x -> _1 = x |
4 |
3 |
anwl |
_1 = x /\ _2 = y -> _1 = x |
5 |
2, 4 |
preqd |
_1 = x /\ _2 = y -> _2, _1 = y, x |
6 |
|
eqsidd |
_1 = x /\ _2 = y -> A == A |
7 |
5, 6 |
eleqd |
_1 = x /\ _2 = y -> (_2, _1 e. A <-> y, x e. A) |
8 |
7 |
elabed |
_1 = x -> (y e. {_2 | _2, _1 e. A} <-> y, x e. A) |
9 |
8 |
elsabe |
x, y e. S\ _1, {_2 | _2, _1 e. A} <-> y, x e. A |
10 |
9 |
conv cnv |
x, y e. cnv A <-> y, x e. A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)