Theorem prcnv | index | src |

theorem prcnv (A: set) (x y: nat): $ x, y e. cnv A <-> y, x e. A $;
StepHypRefExpression
1 id
_2 = y -> _2 = y
2 1 anwr
_1 = x /\ _2 = y -> _2 = y
3 id
_1 = x -> _1 = x
4 3 anwl
_1 = x /\ _2 = y -> _1 = x
5 2, 4 preqd
_1 = x /\ _2 = y -> _2, _1 = y, x
6 eqsidd
_1 = x /\ _2 = y -> A == A
7 5, 6 eleqd
_1 = x /\ _2 = y -> (_2, _1 e. A <-> y, x e. A)
8 7 elabed
_1 = x -> (y e. {_2 | _2, _1 e. A} <-> y, x e. A)
9 8 elsabe
x, y e. S\ _1, {_2 | _2, _1 e. A} <-> y, x e. A
10 9 conv cnv
x, y e. cnv A <-> y, x e. A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)