theorem nfel {x: nat} (a: nat x) (A: set x):
$ FN/ x a $ >
$ FS/ x A $ >
$ F/ x a e. A $;
Step | Hyp | Ref | Expression |
1 |
|
bicom |
(E. y (y = a /\ y e. A) <-> a e. A) -> (a e. A <-> E. y (y = a /\ y e. A)) |
2 |
|
eleq1 |
y = a -> (y e. A <-> a e. A) |
3 |
2 |
exeqe |
E. y (y = a /\ y e. A) <-> a e. A |
4 |
1, 3 |
ax_mp |
a e. A <-> E. y (y = a /\ y e. A) |
5 |
|
eal |
A. y (F/ x y = a) -> (F/ x y = a) |
6 |
|
hyp h1 |
FN/ x a |
7 |
6 |
conv nfn |
A. y (F/ x y = a) |
8 |
5, 7 |
ax_mp |
F/ x y = a |
9 |
|
eal |
A. y (F/ x y e. A) -> (F/ x y e. A) |
10 |
|
hyp h2 |
FS/ x A |
11 |
10 |
conv nfs |
A. y (F/ x y e. A) |
12 |
9, 11 |
ax_mp |
F/ x y e. A |
13 |
8, 12 |
nfan |
F/ x y = a /\ y e. A |
14 |
13 |
nfex |
F/ x E. y (y = a /\ y e. A) |
15 |
4, 14 |
nfx |
F/ x a e. A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(ax_8)