theorem maxle (a b c: nat): $ max a b <= c <-> a <= c /\ b <= c $;
Step | Hyp | Ref | Expression |
1 |
|
letr |
a <= max a b -> max a b <= c -> a <= c |
2 |
|
lemax1 |
a <= max a b |
3 |
1, 2 |
ax_mp |
max a b <= c -> a <= c |
4 |
|
letr |
b <= max a b -> max a b <= c -> b <= c |
5 |
|
lemax2 |
b <= max a b |
6 |
4, 5 |
ax_mp |
max a b <= c -> b <= c |
7 |
3, 6 |
iand |
max a b <= c -> a <= c /\ b <= c |
8 |
|
ifpos |
a < b -> if (a < b) b a = b |
9 |
8 |
conv max |
a < b -> max a b = b |
10 |
9 |
leeq1d |
a < b -> (max a b <= c <-> b <= c) |
11 |
10 |
anwr |
a <= c /\ b <= c /\ a < b -> (max a b <= c <-> b <= c) |
12 |
|
anlr |
a <= c /\ b <= c /\ a < b -> b <= c |
13 |
11, 12 |
mpbird |
a <= c /\ b <= c /\ a < b -> max a b <= c |
14 |
|
ifneg |
~a < b -> if (a < b) b a = a |
15 |
14 |
conv max |
~a < b -> max a b = a |
16 |
15 |
leeq1d |
~a < b -> (max a b <= c <-> a <= c) |
17 |
16 |
anwr |
a <= c /\ b <= c /\ ~a < b -> (max a b <= c <-> a <= c) |
18 |
|
anll |
a <= c /\ b <= c /\ ~a < b -> a <= c |
19 |
17, 18 |
mpbird |
a <= c /\ b <= c /\ ~a < b -> max a b <= c |
20 |
13, 19 |
casesda |
a <= c /\ b <= c -> max a b <= c |
21 |
7, 20 |
ibii |
max a b <= c <-> a <= c /\ b <= c |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)