| Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | hyp hn | x = n -> (px <-> pn) | 
        
          | 2 | 1 | sbe | [n / x] px <-> pn | 
        
          | 3 |  | sbeq1 | z = n -> ([z / x] px <-> [n / x] px) | 
        
          | 4 | 2, 3 | syl6bb | z = n -> ([z / x] px <-> pn) | 
        
          | 5 |  | sbeq1 | z = w -> ([z / x] px <-> [w / x] px) | 
        
          | 6 |  | anr | G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> w = 0 | 
        
          | 7 | 6 | sbeq1d | G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> ([w / x] px <-> [0 / x] px) | 
        
          | 8 |  | hyp h0 | x = 0 -> (px <-> p0) | 
        
          | 9 | 8 | sbe | [0 / x] px <-> p0 | 
        
          | 10 |  | hyp h1 | G -> p0 | 
        
          | 11 | 9, 10 | sylibr | G -> [0 / x] px | 
        
          | 12 | 11 | anwll | G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> [0 / x] px | 
        
          | 13 | 7, 12 | mpbird | G /\ A. z (z < w -> [z / x] px) /\ w = 0 -> [w / x] px | 
        
          | 14 |  | excons | w != 0 <-> E. a E. l w = a : l | 
        
          | 15 |  | anr | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> ~w = 0 | 
        
          | 16 | 15 | conv ne | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> w != 0 | 
        
          | 17 | 14, 16 | sylib | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. a E. l w = a : l | 
        
          | 18 |  | hyp hs | x = a : l -> (px <-> ps) | 
        
          | 19 | 18 | sbe | [a : l / x] px <-> ps | 
        
          | 20 |  | anr | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> w = a : l | 
        
          | 21 | 20 | sbeq1d | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> ([w / x] px <-> [a : l / x] px) | 
        
          | 22 | 19, 21 | syl6bb | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> ([w / x] px <-> ps) | 
        
          | 23 |  | ltconsid2 | l < a : l | 
        
          | 24 | 20 | lteq2d | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> (l < w <-> l < a : l) | 
        
          | 25 | 23, 24 | mpbiri | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> l < w | 
        
          | 26 |  | anlr | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> A. z (z < w -> [z / x] px) | 
        
          | 27 |  | lteq1 | z = l -> (z < w <-> l < w) | 
        
          | 28 |  | hyp hl | x = l -> (px <-> pl) | 
        
          | 29 | 28 | sbe | [l / x] px <-> pl | 
        
          | 30 |  | sbeq1 | z = l -> ([z / x] px <-> [l / x] px) | 
        
          | 31 | 29, 30 | syl6bb | z = l -> ([z / x] px <-> pl) | 
        
          | 32 | 27, 31 | imeqd | z = l -> (z < w -> [z / x] px <-> l < w -> pl) | 
        
          | 33 | 32 | eale | A. z (z < w -> [z / x] px) -> l < w -> pl | 
        
          | 34 | 26, 33 | rsyl | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> l < w -> pl | 
        
          | 35 | 25, 34 | mpd | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> pl | 
        
          | 36 |  | hyp h2 | G /\ pl -> ps | 
        
          | 37 | 36 | exp | G -> pl -> ps | 
        
          | 38 | 37 | anwll | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> pl -> ps | 
        
          | 39 | 35, 38 | mpd | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> ps | 
        
          | 40 | 22, 39 | mpbird | G /\ A. z (z < w -> [z / x] px) /\ w = a : l -> [w / x] px | 
        
          | 41 | 40 | exp | G /\ A. z (z < w -> [z / x] px) -> w = a : l -> [w / x] px | 
        
          | 42 | 41 | anwl | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> w = a : l -> [w / x] px | 
        
          | 43 | 42 | eexd | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. l w = a : l -> [w / x] px | 
        
          | 44 | 43 | eexd | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> E. a E. l w = a : l -> [w / x] px | 
        
          | 45 | 17, 44 | mpd | G /\ A. z (z < w -> [z / x] px) /\ ~w = 0 -> [w / x] px | 
        
          | 46 | 13, 45 | casesda | G /\ A. z (z < w -> [z / x] px) -> [w / x] px | 
        
          | 47 | 4, 5, 46 | indstr | G -> pn |