Theorem lfnauxeq3d | index | src |

theorem lfnauxeq3d (_G: wff) (F: set) (k _n1 _n2: nat):
  $ _G -> _n1 = _n2 $ >
  $ _G -> lfnaux F k _n1 = lfnaux F k _n2 $;
StepHypRefExpression
1 eqsidd
_G -> F == F
2 eqidd
_G -> k = k
3 hyp _h
_G -> _n1 = _n2
4 1, 2, 3 lfnauxeqd
_G -> lfnaux F k _n1 = lfnaux F k _n2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)