theorem lfnauxeq3d (_G: wff) (F: set) (k _n1 _n2: nat): $ _G -> _n1 = _n2 $ > $ _G -> lfnaux F k _n1 = lfnaux F k _n2 $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> F == F |
|
2 | eqidd | _G -> k = k |
|
3 | hyp _h | _G -> _n1 = _n2 |
|
4 | 1, 2, 3 | lfnauxeqd | _G -> lfnaux F k _n1 = lfnaux F k _n2 |