Theorem lfnauxeq2 | index | src |

theorem lfnauxeq2 (F: set) (_k1 _k2 n: nat):
  $ _k1 = _k2 -> lfnaux F _k1 n = lfnaux F _k2 n $;
StepHypRefExpression
1 id
_k1 = _k2 -> _k1 = _k2
2 1 lfnauxeq2d
_k1 = _k2 -> lfnaux F _k1 n = lfnaux F _k2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)