Theorem lfnauxeq2d | index | src |

theorem lfnauxeq2d (_G: wff) (F: set) (_k1 _k2 n: nat):
  $ _G -> _k1 = _k2 $ >
  $ _G -> lfnaux F _k1 n = lfnaux F _k2 n $;
StepHypRefExpression
1 eqsidd
_G -> F == F
2 hyp _h
_G -> _k1 = _k2
3 eqidd
_G -> n = n
4 1, 2, 3 lfnauxeqd
_G -> lfnaux F _k1 n = lfnaux F _k2 n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)