theorem lfnauxeq2d (_G: wff) (F: set) (_k1 _k2 n: nat): $ _G -> _k1 = _k2 $ > $ _G -> lfnaux F _k1 n = lfnaux F _k2 n $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsidd | _G -> F == F |
|
2 | hyp _h | _G -> _k1 = _k2 |
|
3 | eqidd | _G -> n = n |
|
4 | 1, 2, 3 | lfnauxeqd | _G -> lfnaux F _k1 n = lfnaux F _k2 n |