Theorem isfrn | index | src |

theorem isfrn (F: set) {x: nat} (y: nat):
  $ isfun F -> (y e. Ran F <-> E. x (x e. Dom F /\ F @ x = y)) $;
StepHypRefExpression
1 elrn
y e. Ran F <-> E. x x, y e. F
2 isfappb
isfun F -> (x, y e. F <-> x e. Dom F /\ F @ x = y)
3 2 exeqd
isfun F -> (E. x x, y e. F <-> E. x (x e. Dom F /\ F @ x = y))
4 1, 3 syl5bb
isfun F -> (y e. Ran F <-> E. x (x e. Dom F /\ F @ x = y))

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)