Theorem incpl2 | index | src |

theorem incpl2 (A: set): $ A i^i Compl A == 0 $;
StepHypRefExpression
1 cplinj
A i^i Compl A == 0 <-> Compl (A i^i Compl A) == Compl 0
2 eqstr
Compl (A i^i Compl A) == Compl A u. Compl (Compl A) -> Compl A u. Compl (Compl A) == Compl 0 -> Compl (A i^i Compl A) == Compl 0
3 cplin
Compl (A i^i Compl A) == Compl A u. Compl (Compl A)
4 2, 3 ax_mp
Compl A u. Compl (Compl A) == Compl 0 -> Compl (A i^i Compl A) == Compl 0
5 eqstr4
Compl A u. Compl (Compl A) == _V -> Compl 0 == _V -> Compl A u. Compl (Compl A) == Compl 0
6 uncpl2
Compl A u. Compl (Compl A) == _V
7 5, 6 ax_mp
Compl 0 == _V -> Compl A u. Compl (Compl A) == Compl 0
8 cpl0
Compl 0 == _V
9 7, 8 ax_mp
Compl A u. Compl (Compl A) == Compl 0
10 4, 9 ax_mp
Compl (A i^i Compl A) == Compl 0
11 1, 10 mpbir
A i^i Compl A == 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)