theorem ifptreq (G a p p0 p1 q0 q1: wff):
$ G -> (p <-> ifp a p0 p1) $ >
$ G /\ a -> (p0 <-> q0) $ >
$ G /\ ~a -> (p1 <-> q1) $ >
$ G -> (p <-> ifp a q0 q1) $;
Step | Hyp | Ref | Expression |
1 |
|
hyp h |
G -> (p <-> ifp a p0 p1) |
2 |
|
ifpeq2a |
(a -> (p0 <-> q0)) -> (ifp a p0 p1 <-> ifp a q0 p1) |
3 |
|
hyp h0 |
G /\ a -> (p0 <-> q0) |
4 |
3 |
exp |
G -> a -> (p0 <-> q0) |
5 |
2, 4 |
syl |
G -> (ifp a p0 p1 <-> ifp a q0 p1) |
6 |
|
ifpeq3a |
(~a -> (p1 <-> q1)) -> (ifp a q0 p1 <-> ifp a q0 q1) |
7 |
|
hyp h1 |
G /\ ~a -> (p1 <-> q1) |
8 |
7 |
exp |
G -> ~a -> (p1 <-> q1) |
9 |
6, 8 |
syl |
G -> (ifp a q0 p1 <-> ifp a q0 q1) |
10 |
5, 9 |
bitrd |
G -> (ifp a p0 p1 <-> ifp a q0 q1) |
11 |
1, 10 |
bitrd |
G -> (p <-> ifp a q0 q1) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)