theorem ifpeq3a (a b1 b2 p: wff): $ (~p -> (b1 <-> b2)) -> (ifp p a b1 <-> ifp p a b2) $;
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | aneq2a | (~p -> (b1 <-> b2)) -> (~p /\ b1 <-> ~p /\ b2)  | 
        |
| 2 | 1 | oreq2d | (~p -> (b1 <-> b2)) -> (p /\ a \/ ~p /\ b1 <-> p /\ a \/ ~p /\ b2)  | 
        
| 3 | 2 | conv ifp | (~p -> (b1 <-> b2)) -> (ifp p a b1 <-> ifp p a b2)  |