Theorem ifpeq2a | index | src |

theorem ifpeq2a (a1 a2 b p: wff):
  $ (p -> (a1 <-> a2)) -> (ifp p a1 b <-> ifp p a2 b) $;
StepHypRefExpression
1 aneq2a
(p -> (a1 <-> a2)) -> (p /\ a1 <-> p /\ a2)
2 1 oreq1d
(p -> (a1 <-> a2)) -> (p /\ a1 \/ ~p /\ b <-> p /\ a2 \/ ~p /\ b)
3 2 conv ifp
(p -> (a1 <-> a2)) -> (ifp p a1 b <-> ifp p a2 b)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)