Theorem ifpor | index | src |

theorem ifpor (a b c d p: wff):
  $ ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d $;
StepHypRefExpression
1 ifppos
p -> (ifp p (a \/ b) (c \/ d) <-> a \/ b)
2 ifppos
p -> (ifp p a c <-> a)
3 ifppos
p -> (ifp p b d <-> b)
4 2, 3 oreqd
p -> (ifp p a c \/ ifp p b d <-> a \/ b)
5 1, 4 bitr4d
p -> (ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d)
6 ifpneg
~p -> (ifp p (a \/ b) (c \/ d) <-> c \/ d)
7 ifpneg
~p -> (ifp p a c <-> c)
8 ifpneg
~p -> (ifp p b d <-> d)
9 7, 8 oreqd
~p -> (ifp p a c \/ ifp p b d <-> c \/ d)
10 6, 9 bitr4d
~p -> (ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d)
11 5, 10 cases
ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)