theorem ifpor (a b c d p: wff):
$ ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d $;
Step | Hyp | Ref | Expression |
1 |
|
ifppos |
p -> (ifp p (a \/ b) (c \/ d) <-> a \/ b) |
2 |
|
ifppos |
p -> (ifp p a c <-> a) |
3 |
|
ifppos |
p -> (ifp p b d <-> b) |
4 |
2, 3 |
oreqd |
p -> (ifp p a c \/ ifp p b d <-> a \/ b) |
5 |
1, 4 |
bitr4d |
p -> (ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d) |
6 |
|
ifpneg |
~p -> (ifp p (a \/ b) (c \/ d) <-> c \/ d) |
7 |
|
ifpneg |
~p -> (ifp p a c <-> c) |
8 |
|
ifpneg |
~p -> (ifp p b d <-> d) |
9 |
7, 8 |
oreqd |
~p -> (ifp p a c \/ ifp p b d <-> c \/ d) |
10 |
6, 9 |
bitr4d |
~p -> (ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d) |
11 |
5, 10 |
cases |
ifp p (a \/ b) (c \/ d) <-> ifp p a c \/ ifp p b d |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)