theorem ifpan2 (a b c p: wff): $ c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b) $;
Step | Hyp | Ref | Expression |
1 |
|
bitr |
(c /\ ifp p a b <-> c /\ (p /\ a) \/ c /\ (~p /\ b)) ->
(c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) ->
(c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b)) |
2 |
|
andi |
c /\ (p /\ a \/ ~p /\ b) <-> c /\ (p /\ a) \/ c /\ (~p /\ b) |
3 |
2 |
conv ifp |
c /\ ifp p a b <-> c /\ (p /\ a) \/ c /\ (~p /\ b) |
4 |
1, 3 |
ax_mp |
(c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) -> (c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b)) |
5 |
|
oreq |
(c /\ (p /\ a) <-> p /\ (c /\ a)) -> (c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> p /\ (c /\ a) \/ ~p /\ (c /\ b)) |
6 |
5 |
conv ifp |
(c /\ (p /\ a) <-> p /\ (c /\ a)) -> (c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) |
7 |
|
anlass |
c /\ (p /\ a) <-> p /\ (c /\ a) |
8 |
6, 7 |
ax_mp |
(c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) |
9 |
|
anlass |
c /\ (~p /\ b) <-> ~p /\ (c /\ b) |
10 |
8, 9 |
ax_mp |
c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b) |
11 |
4, 10 |
ax_mp |
c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp)