theorem ifpan2 (a b c p: wff): $ c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b) $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bitr | 
          (c /\ ifp p a b <-> c /\ (p /\ a) \/ c /\ (~p /\ b)) ->
  (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) ->
  (c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b))  | 
        
        
          | 2 | 
           | 
          andi | 
          c /\ (p /\ a \/ ~p /\ b) <-> c /\ (p /\ a) \/ c /\ (~p /\ b)  | 
        
        
          | 3 | 
          2 | 
          conv ifp | 
          c /\ ifp p a b <-> c /\ (p /\ a) \/ c /\ (~p /\ b)  | 
        
        
          | 4 | 
          1, 3 | 
          ax_mp | 
          (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)) -> (c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b))  | 
        
        
          | 5 | 
           | 
          oreq | 
          (c /\ (p /\ a) <-> p /\ (c /\ a)) -> (c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> p /\ (c /\ a) \/ ~p /\ (c /\ b))  | 
        
        
          | 6 | 
          5 | 
          conv ifp | 
          (c /\ (p /\ a) <-> p /\ (c /\ a)) -> (c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b))  | 
        
        
          | 7 | 
           | 
          anlass | 
          c /\ (p /\ a) <-> p /\ (c /\ a)  | 
        
        
          | 8 | 
          6, 7 | 
          ax_mp | 
          (c /\ (~p /\ b) <-> ~p /\ (c /\ b)) -> (c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b))  | 
        
        
          | 9 | 
           | 
          anlass | 
          c /\ (~p /\ b) <-> ~p /\ (c /\ b)  | 
        
        
          | 10 | 
          8, 9 | 
          ax_mp | 
          c /\ (p /\ a) \/ c /\ (~p /\ b) <-> ifp p (c /\ a) (c /\ b)  | 
        
        
          | 11 | 
          4, 10 | 
          ax_mp | 
          c /\ ifp p a b <-> ifp p (c /\ a) (c /\ b)  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp)