Theorem ifppos2 | index | src |

theorem ifppos2 (a b c: wff): $ b -> (ifp a b c <-> a \/ c) $;
StepHypRefExpression
1 oreq2a
(~a -> (~a /\ c <-> c)) -> (a \/ ~a /\ c <-> a \/ c)
2 bian1
~a -> (~a /\ c <-> c)
3 1, 2 ax_mp
a \/ ~a /\ c <-> a \/ c
4 bian2
b -> (a /\ b <-> a)
5 4 oreq1d
b -> (a /\ b \/ ~a /\ c <-> a \/ ~a /\ c)
6 5 conv ifp
b -> (ifp a b c <-> a \/ ~a /\ c)
7 3, 6 syl6bb
b -> (ifp a b c <-> a \/ c)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)